Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Despite the well-defined behavioral criteria for posttraumatic stress disorder (PTSD), clinical care is com- plicated by the heterogeneity of biological factors underly- ing impairment. Eye movement tasks provide an opportunity to assess the relationships between aberrant neurobiological function and non-volitional performance metrics that are not dependent on self-report. A recent study using an emotional variant of the antisaccade task demonstrated attentional control biases that interfered with task performance in Veterans with PTSD. Here we present a neuroanatomically-inspired com- putational model based on gated attractor networks that is designed to replicate oculomotor behavior on an affective anti- saccade task. The model includes the putative neural circuitry underlying fear response (amygdala) and top-down inhibitory control (prefrontal cortex), and is capable of generating testable predictions about the causal implications of changes in this circuitry on task performance and neural activation associated with PTSD. Calibrating the model with the results of behavioral and neuroimaging studies on patient populations yields a pattern of connectivity changes characterized by increased amygdala sensitivity and reduced top-down prefrontal control that is consistent with the fear conditioning model of PTSD. In addition, the model makes experimentally verifiable predictions about the consequences of increased prefrontal connectivity associated with cognitive reappraisal training. Keywords: posttraumatic stress disorder, antisaccade task, inhibitory control deficits, attentional bias, cognitive control.more » « less
-
The field of artificial consciousness (AC) has largely developed outside of mainstream artificial intelligence (AI), with separate goals and criteria for success and with only a minimal exchange of ideas. This is unfortunate as the two fields appear to be synergistic. For example, here we consider the question of how concepts developed in AC research might contribute to more effective future AI systems. We first briefly discuss several past hypotheses about the function(s) of human consciousness, and present our own hypothesis that short-term working memory and very rapid learning should be a central concern in such matters. In this context, we then present ideas about how integrating concepts from AC into AI systems to develop an artificial conscious intelligence (ACI) could both produce more effective AI technology and contribute to a deeper scientific understanding of the fundamental nature of consciousness and intelligence.more » « less
-
Abstract Recent advances in philosophical thinking about consciousness, such as cognitive phenomenology and mereological analysis, provide a framework that facilitates using computational models to explore issues surrounding the nature of consciousness. Here we suggest that, in particular, studying the computational mechanisms of working memory and its cognitive control is highly likely to identify computational correlates of consciousness and thereby lead to a deeper understanding of the nature of consciousness. We describe our recent computational models of human working memory and propose that three computational correlates of consciousness follow from the results of this work: itinerant attractor sequences, top-down gating, and very fast weight changes. Our current investigation is focused on evaluating whether these three correlates are sufficient to create more complex working memory models that encompass compositionality and basic causal inference. We conclude that computational models of working memory are likely to be a fruitful approach to advancing our understanding of consciousness in general and in determining the long-term potential for development of an artificial consciousness specifically.more » « less
-
null (Ed.)Few studies have examined high-level motor plans underlying cognitive-motor performance during practice of complex action sequences. These investigations have assessed performance through fairly simple metrics without examining how practice affects the structures of action sequences. By adapting the Levenshtein distance (LD) method to the motor domain, we propose a computational approach to accurately capture performance dynamics during practice of action sequences. Practice performance dynamics were assessed by computing the LD based on the number of insertions, deletions, and substitutions of actions needed to transform any sequence into a reference sequence (having a minimal number of actions to complete the task). Also, combining LD-based performance with mental workload metrics allowed assessment of cognitive-motor efficiency dynamics. This approach was tested on the Tower of Hanoi task. The findings revealed that throughout practice this method could capture: i) action sequence performance improvements as indexed by a reduced LD (decrease of insertions and substitutions), ii) structural modifications of the high-level plans, iii) an attenuation of mental workload, and iv) enhanced cognitive-motor efficiency. This effort complements prior work examining the practice of complex action sequences in healthy adults and has potential for probing cognitive-motor impairment in clinical populations as well as the development/assessment of cognitive robotic controllers.more » « less
An official website of the United States government
